Ratuj Głuszca
brak-podgladu-600

Teoria tektoniki płyt znana i uznawana jest już od bardzo dawna, ale do dziś trwają pewne wątpliwości – nie było dotychczas pełnego modelu wyjaśniającego mechanizm dryfowania płyt litosfery. Najpopularniejsze dotychczas modele proponowały odmienne mechanizmy: wpływ prądów konwekcyjnych płynnego płaszcza Ziemi lub działanie grawitacji. Żaden model nie wyjaśniał jednak wszystkich zjawisk i parametrów związanych z dryfem płyt tektonicznych.

 

Teorię dokładnie opisującą ich ruch przedstawili geofizycy z Instytutu Oceanografii Scrippsa, Uniwersytetu Kalifornijskiego w San Diego oraz australijskiego Uniwersytetu Monash pod kierunkiem Woutera Schellarta.

 

Wykorzystali one dokładne dane o położeniu płyt, ich ruchu poziomym i pionowym, które poddali komputerowej analizie. Efektem jest matematyczny model dokładnie opisujący mechanikę płyt i uzupełniający dotychczasową teorię.

 

Tworzące skorupę ziemską płyty poruszają się z prędkością rzędu centymetrów na rok. Łączą się one w miejscach, gdzie jedna płyta wchodzi pod drugą. Te graniczne obszary nazywane są strefami subdukcji. Prędkość ruchu płyt i rozmiar stref subdukcji różni się znacznie w różnych miejscach Ziemii. Model Woutera Schellarta wyjaśnia, czemu tak jest.

 

Tempo zanurzania się płyt wciąganych do ziemskiego płaszcza podlega w zasadzie takiej samej dynamice płynów, jak powolne tonięcie monety wrzuconej do miodu – wyjaśnia Dave Stegman. – Komputerowy model pokazuje, w jaki sposób zanurzona w płynnym płaszczu część płyty wciąga w głąb część pozostającą na powierzchni. To wciąganie jest źródłem zarówno ruchu płyt, jak i ruchu obszary granicznego, a rozmiar zanurzającej się części determinuje jego tempo.

 

Tektonika płyt jest powierzchniowym skutkiem dynamiki procesów zachodzących wewnątrz Ziemi, ale dopiero ta teoria wyjaśnia, że to głównie same płyty kontrolują ten proces, a nie – jak dotychczas sądzono – pływy materii ziemskiego płaszcza. Oznacza to, że ziemskie procesy mają źródło na powierzchni – w postaci płyt – a nie w jej głębi.

 

Odkrycie wyjaśnia, dlaczego duże płyty jak na przykład australijska, pacyficzna i Nazca poruszają się szybciej, niż mniejsze płyty, jak afrykańska, eurazjatycka, czy Juan de Fuca. Wyjaśnia też ruch dawnej, nieistniejącej już płyty farallońskiej, której prędkość z upływem czasu zmniejszała się wraz z jej zanikaniem i ze zmniejszeniem się strefy subdukcji z 14 tysięcy kilometrów do 1400 kilometrów.

 

Szczegółowe modelowanie przeszłości pozwoliło także wyjaśnić na przykład obecny wygląd kontynentu północnoamerykańskiego. Praca ukazała się w magazynie Science.

 

Źródło: kopalniawiedzy.pl

Autor wpisu: ag

Wypowiedz się

Musiszsię zalogować aby dodać komentarz.