Ratuj Głuszca
pamiec-ram

Podczas IEEE International Electron Devices Meeting IBM zaprezentował pamięć typu racetrack. Została ona wykonana za pomocą standardowych metod produkcyjnych. To niezwykle ważny czynnik, gdyż koszty wdrażania nowych technologii i budowy nowych linii produkcyjnych mogłyby uczynić racetrack nieopłacalną.

Istotą technologii racetrack jest przesuwanie domen magnetycznych, w których zapisane są dane, wzdłuż wyznaczonych tras. Nad wykorzystaniem prądu do przesuwania domen eksperymentował w 2004 roku Stuart Parkin z IBM Almaden Research Center. Wówczas domeny przesuwały się zbyt wolno, by wykorzystać to zjawisko w praktyce. Na szczęście Parkin nie zniechęcił się i kontynuował badania.

W 2008 roku IBM poinformował, że ma zamiar zbudować pamięci typu racetrack (racetrack memory – RM). Od trzech lat prowadzono bardzo intensywne badania i tworzono kolejne eksperymentalne układy. W końcu w ubiegłym roku IBM poinformował, że pokonano ostatnią przeszkodę na drodze do zbudowania RM – nauczono się precyzyjnie sterować ruchem domen magnetycznych.

Pamięć racetrack składa się z miliardów nanokabli w kształcie litery U. Są one przytwierdzone do krzemowego podłoża. W każdym nanokablu można przechowywać setki bitów w formie pól magnetycznych rozmieszczonych wzdłuż niego. Pod wpływem napięcia elektrycznego domeny magnetyczne przesuwają się, a znajdująca się na zakończeniu kabli głowica mierzy magnetooporność domen, odczytując ich zawartość. Domeny przesuwają się z prędkością setek kilometrów na godzinę, a że mają do przebycia odległości liczone w nanometrach, błyskawicznie docierają do głowic odczytujących.

Racetrack nie ma ruchomych części, więc się nie zużywa. Może przechowywać dane przez dziesięciolecia, używa niezwykle mało prądu i niemal nie wydziela ciepła. Pozwala na przechowywanie na tej samej przestrzeni co najmniej 100-krotnie więcej danych niż obecnie dostępne technologie. RM ma zatem wszystkie zalety pamięci RAM, flash oraz dysków twardych i jest pozbawiona ich wad.

Teraz IBM zaprezentował RM wykonany w technologii CMOS. W eksperymentalnej maszynie badawczej, która przez lata służyła do rozwijania RM, nanokable były umieszczone na krzemowym podłożu, a inne podzespoły były podłączone oddzielnie. Wszystkie obwody były oddzielone od układu z nanokablami. Teraz zaprezentowaliśmy zintegrowany układ, którego wszystkie podzespoły znajdują się na jednym kawałku krzemu – mówi Stuart Parkin.

Nowe pamięci wykorzystują niklowo-żelazne nanokable o długości 10 mikrometrów, szerokości 150 nanometrów i grubości 20 nanometrów. Na jednym końcu kabla znajduje się połączenie elektryczne, które wysyła impulsy o precyzyjnie kontrolowanym spinie, za pomocą których zapisywane są dane. Na drugim końcu znajduje się głowica odczytująca.

Specjaliści z Instytutu Elektroniki Fundamentalnej z francuskiego Orsay, którzy wraz z innymi europejskimi ośrodkami pracują nad własną wersją RM mówią, że osiągnięcia IBM-a są imponujące, ale nie zawierają wszystkich koniecznych elementów. Podkreślają, że Błękitny Gigant umieścił w każdym nanokablu tylko jedną domenę magnetyczną.

Stuart Parkin odpowiada, że intencją jego zespołu nie było w tej chwili prezentowanie pojemności RM, ale pokazanie, że układ taki można wyprodukować za pomocą standardowych technologii. Teraz naukowcy z IBM-a prowadzą eksperymenty, mające na celu umieszczenie jak największej liczby domen magnetycznych na pojedynczym nanokablu. Już dowiedzieli się, że zastosowanie innego materiału niż stop niklu i żelaza pozwoli na zwiększenie pojemności RM. Stopu niklu i żelaza (zwanego miękkim materiałem magnetycznym) standardowo używa się podczas badań, gdyż można go łatwo magnetyzować i rozmagnetyzować. Zespół Parkina eksperymentował już także z tzw. twardym materiałem magnetycznym, którego właściwości magnetyczne są związane z jego siatką krystaliczną i nie jest go łatwo rozmagnetyzować. Z badań nad tym materiałem dowiedzieliśmy się, że możemy bardzo szybko przesuwać domeny magnetyczne, które są jednocześnie mniejsze i silniejsze niż w miękkim materiale magnetycznym – mówi Parkin. To z kolei oznacza, że nie tylko będzie można zwiększać pojemność RM, ale że niedoskonałości w strukturze nanokabli nie będą prowadziły do zakłóceń w działaniu pamięci.

Źródło: kopalniawiedzy.pl

Wypowiedz się

Musiszsię zalogować aby dodać komentarz.